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- Write your name and student number on every separate sheet of paper

- You are not allowed to use the lecture notes, nor other notes or books

- The weights of the exercises are given in the table below

- Answers may be given in Dutch

- lllegible handwriting will be graded as incorrect

- Good luck!

Weighting
la) 7|2a) 8|3a) 4
1b) 7|2b) 4|3b) 6
le) 4|2) 8|3c) 4
1d) 4|2d) 4|3d) 6
le) 7|2) 6|3) 5
1f) 6

Result = M +1
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Exercise 1

Consider a bar magnet as in the figure.

Take the central axis through the north and south pole (indicated by N and S) to be
the z axis and call the two-dimensional cross section of the bar magnet orthogonal to
this central axis the base.

(a) Consider the base to be a square. Identify all symmetry transformations that leave
the bar magnet (without N and S written on it) and its magnetic field invariant. These
symmetries form the group Cy. Hint: there is only one reflection plane.

(b) Argue, using geometric arguments, that none of the symmetry operations are con-
jugated to each other (hence only to themselves) and conclude whether or not the
symmetry group is Abelian.

To simplify the analysis, from now on assume the base to be a non-square rectangle,
such that the symmetry group is reduced to Coyp,.

(c) Give an identification between elements of Uy, and Dy and argue that the two
groups are isomorphic (as opposed to Cyp, and D).

(d) Construct the character table of Cy, and explain how the entries are obtained.

(¢) Give the three-dimensional vector and axial-vector representations, called D" and

DA, for the two transformations that generate Cyy,, and check whether the determi-
) g

nants are as expected for rotations and reflections of (axial-)vectors.

(f) Decompose DV and D* of Cy, into irreps and show that the answers are in agree-
ment with a bar magnet having a permanent magnetic dipole moment.



Exercise 2

Comnsider a two-dimensional electron system as in studies of the Quantum Hall effect.
Here a magnetic field is pointing in _the z direction orthogonal to the plane in which
the electrons move. Electric fields E and electric currents J in that two-dimensional
plane are related by a so-called resistivity tensor p, according to F; = py;J; (1,5 = 1, 2).
Here and below summation over repeated indices is implicit.

(a) Use the transformation properties of the equation F; = = py;d; to derive that p;;
transforms into p, = Dk@ng pi; under (subgroups of) rotations.

(b) Show that p;; is invariant if it satisfies pD¥ = DV p.

(c) Assume the system is invariant under rotations around the z axis. Explain why in
the case of SO(2) symmetry, p1; = pas and p1a = —po1.

d) Explain why the trace of p;; transforms as a scalar.
Y J

(e) Explain why €;;p;; transforms as a pseudo-scalar and why it can depend linearly on
the magnetic field (as it does in the case of the Quantum Hall effect). Here ¢;; is the
two-dimensional analogue of ¢;;5: €17 = €32 = 0 and €19 = —eg; = 1. (Hint: consider
how p transforms under an explicit two-dimensional reflection.)



Exercise 3

Consider the group SU(2) of unitary 2 X 2 matrices with determinant equal to 1.
Consider its action on the angular momentum states |s, ms) through the operator

—

U(0,%) = exp (%6’71 : S)
(a) Write down the explicit matrix for S, acting on the space of |3, ms) states.
(b) Write down the explicit matrix representation D6=3) of U (8, 2), ie. for i = 2.
(¢) Show that D¢=2) € SU(2) and determine the range of 6.

(d) Show that this set of matrices do not form a (compleﬁ:) representation of SO(2),
but rather a projective representation.

(e) Use the character of the s = % representation to show that it is equivalent, but not
equal to its complex conjugate representation.



